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T H E R M A L  S T A B I L I T Y  OF A R E A C T I V E  LIQUID F L O W  

T. A. B o d n a r '  UDC 532.72 

Stability analysis o/the solution of the system of differential partial equations describing the 
thcrmal state of a reactive liquid flow is based on reducing the infinite-dimensional problem to a 
finite-dimensional space containing the part, of the solution that determines its stability. Within 
the framework of the projection method, the zero space of the corresponding generating operator 
is used as the finite-dimensional space. Generally, the zero space of the genezuting operator of 
the problem considered consists of its eigenfunctions. Analysis is performed for a combination 
of liquid-flow parameters such that the generating operator degenerates and to construct its 
zero space, it is necessary to use vectors generated by the Jordan chain. Calculation results 
are presented. 

The thermal stability of tangential and axial flows of a reactive liquids has been studied previously 
[1, 2]. The stability limits of the solutions of the corresponding problems were found to be hypersurfaces in 
the space of liquid-flow physical parameters, which are treated as independent coordinates. (If just one flow 
parameter is retained as a bifurcation parameter and the remaining parameters are fixed, the hypersurface 
degenerates into a point.) 

Determination of the stability of solutions of infinite-dimensional problems described by differential 
partial equations involves reduction of their dimension. Within the framework of the projection method [3], 
reduction is achieved by projecting tile problem considered onto the eigenspace generated by the corresponding 
generating operator. In [1, 2], a thermal stability analysis was performed for combinations of liquid-flow 
parameters for which the generating operators have a simple structure, i.e., the algebraic and geometric 
multiplicities of the eigenvalues of each of the operators coincide. The zero space of a generating operator 
with a simple structure consists of its eigenfimctions. At the same time, for particular combinations of 
liquid-flow parameters, the eigenvalues of the generating operators have algebraic multiplicity exceeding the 
geometric multiplicity and the operators do not have a simple structure. In this case, to construct the zero 
space of the generating operator and to study the stability of a solution of the problem, it is necessary to 
use the concept of the generalized functions generated by the Jordan chain. Apparently, the necessity of 
determining the functional eigenspace arises only when the multiple eigenvalue is equal to zero and the real 
parts of the remaining eigenvalues are negative. Otherwise, the stability problem is solved at once and no 
additional analysis is required. 

We consider the problem of the evolution of the thermal state of an axial flow of a reactive liquid in a 
circular channel of finite length, which is a mathematical model of a polytropic chemical reactor [4], written 
in functional form [2]: 

OU 
= AU + B(U,  U) + C(V,  U, U) + ~(0, 0) + O(IUI4). 

ot (1) 

OU(l , t )  0.5 ,u(l, t) = 0. V(x ,  to) = 0, v ( 0 ,  t) = 0, 0x  
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Here x is the coordinate along the flow axis, t is time, to is the initial time, w is the liquid flow velocity, and 
1 is the length of the reactor. In the problem (1), the unknown is the vector U, which generally describes the 
physicochemical state of the liquid flow. The vector U is acted upon by the constant ~(0, 0), linear (AU), 
and nonlinear [B(U,  U)  and C(U, U,  U)] operators, which transform it to other vectors whose dimension is 
identical to tha t  of U. The dimension of the vector U is equal to the number of independent parameters 
describing the thermal and chemical state of tim liquid. In [2], as such parameters, we used the temperature 
U1 and concentration Us of one of the reacting liquid components. The heat source function ~ and the heat 
loss function ~ have the form 

( ~ ( g l ,  U2) -~- C0kl ( t  -4- Us e x p  ( - 0 . 5 w x ) ) ( ] .  -~- ~g2co(! -a t- Us e x p  ( - 0 . 5 w : E ) ) )  - 2  

where co, kl, ks, a l ,  

dimensionless. 

as 

• exp (U1 exp (-0.5wx)(1 +/3U1 exp ( -0 .5wx)) - l ) ,  

~: : a i  Ui exp (-0.5wx),  

and /3 are constants. The variables and parameters included in the problem (1) axe 

In this formulation, the vector U and the operators ~(0, 0), A U ,  B ( U ,  U),  and C(U,  U, U)  are written 

[ u :  r  
u : , o (0 ,0 )  = , 

u2 - ~ ( 0 ,  o) 

A U =  
02/0 x2 "[- ~1,0 --  O~1 -- 0-25W2 

- - ~ 1 , 0  

~0,1 U1 

OS / Ox 2 - a~o,1 - 0.25w s Us ' 

B ( U , U )  = ~2,0 ~l,~ ~o,s II U~ U, U2 V 2 I1 t , 
- a~s ,0  - a ~ : , l  -a~0,2 

C ( V , U , U ) =  ~3,0 ~s,~ ~1,2 ~0,3 [[ U31 u2gs U1U2 V 3 ][t. 
�9 --t~r - - c ~ 2 , l  - - 0 ~ l , 2  - - 0 ~ 0 , 3  

Here 
oi+J~(o, O) 

1 exp (0.5wx) 
: ou o::  

c~ is a constant, and II �9 II t is a transposed matrix. 
The linear operator A U  is chosen as the generating operator. Then, to study the stability of solutions 

of system (1), we should solve the spectral problem A U  = O. The eigenvalues ~rn (n = 1, 2 , . . . )  of the operator 
A satisfy the quadratic equations [2] 

an2 + an(2A 2 + 0.5w 2 + a~0,1 + cq - ~1,0) + a ~ 0 , 1  

+ (A,~ + 0 .25w2)(A~ + 0 .25w 2 + ~ 0 , ,  + ~ ,  - ~:,0) = o, (2) 

where An are positive roots of the equation tan (A/) ---- 2Aw -1, arranged in ascending order: A1 < A2 < . . . .  
The coefficient at the higher-order exponent of Eq. (2) is equal to unity, and the remaining coefficients 

are analytic functions of the parameters of the problem w, a, a l ,  ~::,o, and ~0,1 (this corresponds to the 
conditions of Theorems XII.1 and XII.2 extended to the multiparameter case [5]). Hence it follows that 
in the space of the parameters of the problem, which are treated as independent coordinates, the stability 
limit of the solution of the lilmar equation A U  --- 0 is a smooth hypersurface, at each point of which tile 
combination of values of the coordinates is such that  the maximum real root of the first of Eqs. (2) wanishes 
or, if the roots are complex conjugate, their real parts vanish. 
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Fig. 1 

A s tabi l i ty  analysis of the bifurcat ion solution of system (1) for the complex conjugate  and real roots 
of the secular equat ion (2) for n = 1 is presented in [1, 2]. 

I t  is of interest to study the stabil i ty of the solutions of system (1) at points on the hypersurface at 
which 

~1,0 - a = 0 (a = 2A 2 + 0.5w 2 + a~0,1 ~- C r l )  , Cl~{:~ICtY0,1 -- (A 2 + 0.25W2) 2 = 0 (3) 

and both roots  of  the first of Eqs. (2) have real and imaginary parts  equal to zero: Recq l  = Rea l2  = 

I m a t l  = Imcrm = 0. The  solution of the first of Eqs. (2) obtained for fixed values a = 1, a l  = 0.1, and 
~0,1 = 0.1 tak ing  into account relations (3) is shown in Fig. 1 in the form of a curve of l (w ,  qzl,0). The roots 

of Eq. (2) have a zero real part  on surface I and a zero imaginary part  on surface II  and are equal to zero 
on tile line of intersection of surfaces I and II. Surface I (except for the line of intersection with surface II) 

is tile upper  bound  of the region of s table  solutions of the equation A U  = O. The physical meaning of the 
calculation results  is that  the critical length of tile reactor l decreases with increase in the coefficient r 

which characterizes the heat-release ra te  in the liquid (01/0~1,o < 0), and it increases wi th  increase in tile 
flow velocity, which determines the convective component  of heat transfer through the boundary  of the region 
occupied by the liquid (Ol/Ow > 0). 

Let # = R e ~ l  = Recq~ = 0.5(q#1,0 - a),  and after substitution of ~l,0 = 2# + a into tim expression 
for the opera to r  A, tile operator  in the neighborhood of the point # = 0 can be written as the expansion 

OA(O) 
A = A ( # )  = d(O) + # 

where 

(4) 

A(O) = 0 2 / 0 x 2  + a -  cq - 0.25w 2 ~00,1 OA(O) _ 2 0 

- - c t a  G ~ 2 / 0 x  2 - -  Og~90,1 - -  0.25w 2 ' - ~  --2C~ 0 " 

The  eigenvalue crl = 0 has an algebraic multiplicity of 2 and a geometrical multiplicity of 1, i.e., there 
is just one eigenvector 

1 sin(Alx) (7 = A~ + a~:0,1 + 0.25w 2) Yt = - I  
-r/~0,1 

that satisfies the equation (A(0) - a l I ) y  I = 0, which corresponds to just one eigenvector 

ac~ 
Ye = sin(Alx), 

which is conjugate  with respect to the scalar product  and makes the operator (A*(0) - a l I )  vanish. Here I 
is a unit 2 • 2 mat r ix  and 
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A* = 0 2 / 0 x 2  + 2p  + a - a l  - 0.25w 2 -c~(2p + a) 

~o,1 02 / O x  2 - a~o.1 - 0.25w 2 

The scalar product  of the vector Yl and the conjugate vector y~ cannot be normalized since it is equal 
to zero by vir tue of (3): 

l l 

= Y l Y 2  d x  = (~o, t a a  - 7/ )~0,1 sin 2 (A1x) d x  

o o 

1 

= (~0,1c~c~1 -- (A 2 + 0.25w2)2)~O,I / sin 2 (A1x) dx = 0. 

0 

(The bar indicates complex conjugacy but here ~ = y~ since y~ is a real vector.) 
The  value of the double root is ~1 = 0, which does not permit  one to make a conclusion on the stability 

of the solutions of the problem (1). In this case, for a stability analysis, it is necessary to use the nonlinear 
terms of system (1) to eliminate the point of degeneracy of the linear problem A ( O ) U  = 0, defined by relations 

(3). 
Moving from the point of degeneracy, we seek the branching eigenvalues ~l I and (h2 with perturbation 

of tile parameter ]z. Following [3], we assume that one of the eigenvalues is identically equal to zero, for 

example, ~11 ~ 0, and the other eigenvalue ~12, which is a smooth function of ~ [5], determines the stability 

of the solution of the problem. The branches chl and ~12 are continuous functions of the parameter # 
if the double eigenvalue corresponds to the two-dimensional zero space of the operator A(0) that admits 

normalization. 
To construct the zero space of the operator A(0) with the scalar product that admits normalization, 

it is necessary to use the concept of generalized vectors. According to [3, 6], the vector basis of the operator 
A(0) is determined by the following Jordan chain of equations for eigenvectors and generalized eigenvectors: 

A ( O ) y ,  = O, A*(O)y.* 2 = 0, A(0)y 2 = y , .  A*(O)y* 1 = y~.  (5) 

The eigenvectors Yl and y~ are determined,  and from the last two equations of (5), we obtain with 
accuracy up to the constant coefficients C1 and C2 the generalized eigenvectors 

0 Co. 0 Y2 = C1 ~-1 sin(Alx), y~ = sin(AlX). 
0,1 - 1  

In the constructed vector basis of the operator  A(0), the following relations hold: ( y ~ , y ~ )  = 

= A* 0 * ( ) Y l )  (Y'2, Y2>. Assuming that  (A(O)Y2,  Y'*2) (Y2,  ( )Y2> = O, and (Yl, Y~> = (A(0)Y2,Y~> = (Y2, A *~0" *' = * 
C1 = C2 = 2~v0,1A1/[~?(/AI -s in(Al l )  cos (All))], we obtain the normalization condition (Yl, Y~> = (Y2, Y~> : 1. 

We seek solutions of the problem (1) in the form of series in exponents of the amplitude 

= ( u ,  

which is defined as the projection of the vector U onto the eigensubspace associated with the generalized 

eigenvector y~: 

ee ~nVn ~ ~npn 
= - 7 . ' - '  . . . . . .  :,,! . ( 7 )  

n=l n=I 

The vectors Un = [IUln U2,,{[ t and the coefficients #u are unknown and are to be determined. 
Substi tut ion of series (7) into the first equation of system (1), in which the operator A is represented 

as series (4), and identification of sets of terms with tim same exponent of the amplitude a lead to the system 

A(O)U1  ---- 0, (8) 

328 



OA(O) 
A(O)U2+ 2#l O# UI + B(U1,U1)=O (9) 

and equations with higher exponents of ~. 
.Joint solution of Eqs. (6) and (7) gives (U1, Y~) = 1, and (Un, Y~} = 0, n /> 2. Hence, the eigenvalue 

problem (8) has the unique solution UI = Yl. 
Equation (9) contains the unknown parameter #t,  the unknown vector 

u2 = II v,2 v22 II t,  
and the following vectors, which become known after solution of Eq. (8): 

OA(O) 
o---T -g ,  = II 2 - 2 5  litsin(~lX), 

,.,0 0 2 0 

B(U1,U1) = 8sin2(Alx) exp(-O.5wx) ~92,o - 17~Ol, 1 +r/  ~o,2 . 
0 0 2 0 

--O~(q$2, 0 - -  7}q$1,1 + 7] c, fi'0,2) 

0 Here ~i,j = ~i,j(x = 0). 
Calculating the scalar product of Eq. (9) into the vector Y~ and using the orthogonality condition 

(A(0)U2, y.;) = 0, we have the parameter 

. . ~ / O A ( O )  . -~ 
/st = 0 . 5 < B ( U I , U 1 ) , ~ 2 / \ ~ U I , Y 2 >  �9 (10) 

Substitution of tile expressions 

l l 

(B(U1, Vl), Y'*2> = f B(U1, Vl) t .~ dx = 8ClaA(a - "q) --  / sin 3 (Xlx)exp (--0.5wx)dx, 
. J  

0 o 

l l 

(oA(o) u,,,,,,.;} = i ]< S [ O# Ut fl;. dx = 2Clct(a - 71) s i n  2 (~1 x )  dx 
o o 

( A  o , o 2 0  : 992,0 -- [/921,1 -I- 77 ~0 ,2)  i n t o  Eq. (10) gives 

l l 

#t = 4A isin:l  (.klx)exp(-O.bwx) dx[./'sin2 (AlX) dx] -1 (11) 

0 0 

The integrals on the right side of (11) are expressed in terms of elementary functions. 
According to [3], the definition of the stability of the stationary bifurcation solution AU + B(U, U) + 

C(U, U, U) = 0 redtlces to analysis of the spectral problem 

7 0  = AU + B(U(r U) + C(U(c), U(~), U) (12) 

for small perturbations exp (Tt)U of the solution U(e).  Substituting series (7) into (12), we obtain 

7 0  = A(O)U + e [#t ~ ( f  B(U,,  U)] + O(e20).  (13) 

The unperturbed solution of the problem U can be decomposed into a part U1 that belongs to the 
zero space of the operator A(0) and an additional small part U2 with zero projection (U2,y*) = 0, where 
i = 1 and 2. 

The part of the solution that belongs to the zero space of the operator A(0) is a linear combination of 
the vectors Yl, Y2: ~rl = 01Yl -4- 02Y2, and the general solution of the unperturbed problem has the form 

~-f = OlYl  + 02y2 + [~r2- (14) 
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Substitution of the unperturbed solution (14) into Eq. (13) gives 

~r ,  = A(o)O, + r OA(O)~ + B(y,,  0 , ) ]  + O(sU2)+ O(:2U), 

where 

OA(O) U, = 20: sin (A:x)Iil -all t ;  A(O)01 = 02y,; O# 

(15)  

= 0 -1 0 B(y:, Lrl) (2'r701 - C1 2)~0,]~:,: sin2 (Alx) exp (-0.5wx)11-1 all t. 

Joss and Joseph [3] proved that 0 ( : 0 2 )  = O(:2U), and, hence, the last two terms in (15) have the same 
order of smallness. 

Scalar multiplication of the left and right sides of Eq. (15) by the vectors y~ and y~ leads to the 
following system of algebraic equations for the unknown constants 0, and 02: 

/OA(O) 0 y*)] + 0(120) ,  = 1, = : [ . ,  ,,Yi* } + (B(y, 0 , ) ,  i 2. (:6) ~/( 0 ,, Yi* } (A(0) U,,  y~) + \--g-. 
To solve system (16), we calculate the scalar products 

(O:,y~) 01, ( : , Y 2 )  02, (d(0)Ul,y~) 02, (A(0)Ol,y~) 0, 

l 

oA(ol ,,y,) 2c2~o: O * = / s i n  2 (A:x) dx, 

0 

l 

IOA(O) 1 , Y 2 )  2C~(O~ O * = - -  0 )01  / s i n  2 (,~LX) dx,  

o 

l 

U1), Yl) = c~C2(C102 - 2,101)~o, Iqo~ f sin 3 (,k:x) exp(-0.5wx) dx, ( B ( m ,  - * 

o 

l 

o �9 _ , 0  f (B(Yl, 1),Y2) = a(a - 'q)(C102 - -~01,c70,t~1,1 sin3()~lx)exp(-O.5wx) dx 
0 

and determine the coefficients 
l l 

e,=2C2a#l f sin2(A,x)dx-2C2arl~,~~ f sin3(A:x)exp(-O.5wx)dx, 
o 0 

l 

o f ( lX) exp (-O.5wx) dx, e2 = tFlt~2 ~0,1~I,1 s in3 

0 

l l 

e3=2a(a- . , l )#l /s in2(Atx)dx - 2a(a _ r?)~qOo,l~l, 1 - 1  o / sin 3 (Alx)exp(-O.5wx)dx, 
0 0 

l 

e4 C t a ( a  -1  o / ()~lX) exp(-0.5wx) dx. = --  ~)~0,1 ~1,1 s in3  

0 

System (16) then becomes 
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701 = e l C O l + ( l + e 2 ~ ) O 2 + O ( e 2 ) ,  702=e3~O1A-e4~02+O(g2). 

Sys tem(17)  has a nontrivial solution for 01 and 02 if 

e1r -- ~ - t -0 ( r  2) 1 + e 2 ~ - ] - 0 @  2) 

det e 4 e - 7 + O ( s  2) = 0 .  e3e-l-O(e 2) 

It is obvious that  7 is an eigenvalue of the matrix 

e ls  + O ( e  2) 

e a e + O ( e  2) 

1 + e2r + 0(~  2) 

e4a + O(a 2) 
= 0 .  

(17) 

(18) 

Taking into account that  v/e3s + O(~ 2) = vr6~ + O(s3/2), we find roots  of the quadratic equation (18) 

71,2 = + ~  + 0.5(el + e4)a + O(z3/2). (19) 

The  expression for the eigenvalues (19) corresponds (with accuracy to notation) to the formula obtained 
within the framework of the general theory [3]. If the real parts of the roots 71 and 72 have the same signs, 
the bifurcation solution is stable on one side of the critical point and unstable on the other; when the signs 
of the real parts  3'1 and 3'2 are opposite, the solution is unstable on bo th  sides of the critical value. Finally, if 
the roots of Eq. (19) are equal to zero, the stability problem is solved by considering the higher-order terms 

C(V, U, U) of Eq. (1). 
As mentioned above, to determine the stability of the solution of the bifurcation problem (1) for the 

parameter values corresponding to the line of intersection of surfaces I and II (see Fig. 1), it is necessary to 
consider the effect of the nonlinear terms. Let the coefficients at the nonlinear terxns be ~2,0 = 0.2, ~t,~ = 0.2, 
and ~0,2 = 0. We determine the roots of Eq. (19) for an arbitrary point  on the line of intersection of surfaces 
I and II, for example,  the point ~1,0 -- 0.4, and w = 0.25. From calculations, we obtain 

A~ = 0.29, a = 0.4, ~/= 0.2, l = 4.009, Yt = [I 1 -2[[tsin(0"29x), 

YT = I[0 -11I t sin (0.29x), Y2 = [10 10ll t sin (0.29x), 

* = ![0.4 0.2]1 t sin(0.29x) C1 C2 0.317, el Y2 , = = = 0.119, e2 = 0.18, 

e3 --= 0.065, e4 = 0.1, 71 = 0.364, 72 = -0.146.  

Hence it follows tha t  one of the real roots 71 and 72 is positive for any sign of # and the bifurcation solution 

at the selected point is unstable on both sides of the critical value. 
We note tha t  when the right side of the differential equation (1) contains the defect ~ ( 0 , 0 )  ~ 0, 

the bifurcation solution is split into separate solutions. The general method  of [3] for solving problems with 
perturbations due to defects does not depend on the procedure of constructing the zero space of the generating 
operator. Hence, for (q'(0, 0), Yi) ~ 0 (i = 1 and 2) separate solutions are obtained by the same procedure 
as in the case of generating operators with a simple structure [1]. 
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